Нахождение прогнозных значений методом наименьших квадратов
Страница 1

Информация » Социальное прогнозирование в сфере демографических процессов » Нахождение прогнозных значений методом наименьших квадратов

Сущность метода наименьших квадратов состоит в минимизации суммы квадратических отклонений между наблюдаемыми и расчетными величинами. Расчетные величины находятся по подобранному уравнению – уравнению регрессии.

Чем меньше расстояние между фактическими значениями и расчетными, тем более точен прогноз, построенный на основе уравнения регрессии. Теоретический анализ сущности изучаемого явления, изменение которого отображается временным рядом, служит основой для выбора кривой. Иногда принимаются во внимание соображения о характере роста уровней ряда. Для нахождения прогнозных значений численности населения часто предполагается, что рост идет в геометрической прогрессии, и тогда сглаживание производится по показательной функции.

(4)

где - численность населения в прогнозный период; - численность населения в период, предшествующий прогнозному; е - основные натурального логарифма; k - общий коэффициент прироста населения, выраженный в долях единиц, рассчитанный по формуле: (5)

где M - число родившихся за период; N – число умерших за период; П- число прибывших за период; В – число выбывших за период; S – средняя численность населения за период; t- период, на который разрабатывается прогноз.

Согласно имеющимся данным, численность населения Оренбургской области на 1 января 2008 года составила 2 119 003 чел., на 1 января 2009 – 2 111 531 чел., за 2008 год родилось 26 947 чел., умерло 30 904 чел., 25 570 чел. прибыло и 29 085 чел. выбыло. Рассчитаем численность населения в 2010-2012 гг. при условии, что коэффициент общего прироста населения () останется неизменным на всем протяжении прогнозных лет:

чел.

чел.

чел.

Сглаживание временных рядов методом наименьших квадратов служит для отражения закономерности развития изучаемого явления. В аналитическом выражении тренда время рассматривается как независимая переменная, а уровни ряда выступают как функция этой независимой переменной. Ясно, что развитие явления зависит не от того, сколько лет прошло с отправного момента, а от того, какие факторы влияли на его развитие, в каком направлении и с какой интенсивностью. Развитие явления во времени выступает как результат действия этих факторов.

Правильно установить тип кривой, тип аналитической зависимости от времени – одна из самых трудных задач предпрогнозного анализа.

Подбор вида функции, описывающей тренд, параметры которой определяются методом наименьших квадратов, производится в большинстве случаев эмпирически, путем построения ряда функций и сравнения их между собой по величине среднеквадратической ошибки, вычисляемой по формуле:

(6)

где – фактические значения ряда динамики; – расчетные (сглаженные) значения ряда динамики; n – число уровней временного ряда; р – число параметров, определяемых в формулах, описывающих тренд.

С помощью программы Excel проверим предположение о том, что изменение численности населения в Оренбургской области, хорошо апроксимируется экспоненциальной линией тренда.

Рис. 1. Динамика численности населения в Оренбургской области с экспоненциальной линией тренда.

Видно, что разница между фактическими и сглаженными значениями данного ряда очень велика. Невысокий коэффициент достоверности аппроксимации также подтверждает, что использовать данный тип тренда нецелесообразно.

Страницы: 1 2 3 4 5


Статьи по теме:

Социальная работа с неблагополучными семьями. Ребенок в неблагополучной семье
Детский психолог М.И. Буянов в своей книге «Ребенок из неблагополучной семьи» говорит о том, что «только система отношений «семья – ребенок» имеет право рассматриваться как благополучная или неблагополучная.» Отсюда можно сделать вывод о ...

Структура организаций
Социальная организация — одно из наиболее сложных общественных явлений, обладающее своей специфической структурой. Основной критерий структурирования социальных организаций — степень их формализации, соотношение формального и неформальног ...

Анализ структуры и показателей миграции
Абсолютные показатели - численность прибывших в населенный пункт (П), численность выбывших из населенного пункта (В), абсолютный миграционный прирост (сальдо миграции, чистая миграция) - (П-В), объем миграции (валовая миграция, брутто-миг ...